DNN/머신러닝

사이킷런으로 타이타닉 생존자 예측

Return 2021. 6. 23. 21:42
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns 
%matplotlib inline

titanic_df = pd.read_csv('./train.csv')
titanic_df.head()

 

info() 메소드를 사용해 결측치를 확인해 본다.

titanic_df.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

 

fillna()메소드를 이용해 결측치를 채운다.

titanic_df['Age'].fillna(titanic_df['Age'].mean(),inplace=True)
titanic_df['Cabin'].fillna('N',inplace=True)
titanic_df['Embarked'].fillna('N',inplace=True)

groupby를 이용해 성별과 생존여부의 관계를 알아보았다.

titanic_df.groupby(['Sex','Survived'])["Survived"].count()

Sex     Survived
female  0            81
        1           233
male    0           468
        1           109
Name: Survived, dtype: int64


sns.barplot(x='Sex',y='Survived',data=titanic_df)

이번에는 Pclass와 생존여부를 barplot으로 그려보겠습니다.

sns.barplot(x='Pclass',y='Survived',hue='Sex',data=titanic_df)

Cabin , Sex , Embarked 문자열로 이루어진 피처들의 one-hot-encoding

from sklearn import preprocessing 
def encode_features(dataDF):
    features = ['Cabin','Sex','Embarked']
    for feature in features:
        le = preprocessing.LabelEncoder()
        le =le.fit(dataDF[feature])
        dataDF[feature] = le.transform(dataDF[feature])
        
    return dataDF

titanic_df = encode_features(titanic_df)
titanic_df.head()

 

이때까지 했던 작업을 함수로 만들어보고 바로 학습/예측/평가를 해보겠습니다. 

def fillna(df):
    df["Age"].fillna(df["Age"].mean(),inplace=True)
    df["Cabin"].fillna('N',inplace = True)
    df["Embarked"].fillna('N',inplace=True)
    df["Fare"].fillna(0,inplace=True)
    
    return df

def drop_feature(df):
    df.drop(["PassengerId","Name","Ticket"],axis=1,inplace=True)
    return df

def format_feature(df):
    df["Cabin"] = df["Cabin"].str[:1]
    features = ["Cabin","Sex","Embarked"]
    for feature in features:
        le = preprocessing.LabelEncoder()
        le = le.fit(df[feature])
        df[feature] = le.transform(df[feature])
        
    return df 

def transform_features(df):
    df = fillna(df)
    df = drop_feature(df)
    df = format_feature(df)
    
    return df 
    
    
#데이터 가공 
titanic_df = pd.read_csv("./train.csv")
y_titanic_df = titanic_df['Survived']
X_titanic_df = titanic_df.drop('Survived',axis=1)

X_titanic_df = transform_features(X_titanic_df)


from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_titanic_df,y_titanic_df,test_size=0.2,random_state=11)


from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

dt_clf = DecisionTreeClassifier(random_state=11)
rf_clf = RandomForestClassifier(random_state=11)
lr_clf = LogisticRegression()

#DecisionTreeClassifier 학습/예측/평가
dt_clf.fit(X_train,y_train)
dt_pred = dt_clf.predict(X_test)
print("DecisionTreeClassifier 정확도 :{:.4f}".format(accuracy_score(y_test,dt_pred)))

#RandomForestClassifier 학습/예측/평가
rf_clf.fit(X_train,y_train)
rf_pred = rf_clf.predict(X_test)
print("RandomForestClassifier 정확도 : {:.4f}".format(accuracy_score(y_test,rf_pred)))

#LogisticRegression 학습/예측/평가
lr_clf.fit(X_train,y_train)
lr_pred = lr_clf.predict(X_test)
print("LogisticRegression 정확도 : {:.4f}".format(accuracy_score(y_test,lr_pred)))

DecisionTreeClassifier 정확도 :0.7877
RandomForestClassifier 정확도 : 0.8547
LogisticRegression 정확도 : 0.8492

검증.

1. kfold 

2. cross_val_score()

 

from sklearn.model_selection import KFold

def exec_kfold(clf,folds=5):
    kfold = KFold(n_splits=folds)
    scores = []
    
    for iter_count , (train_index,test_index) in enumerate(kfold.split(X_titanic_df)):
        #kfold.split 함수는 학습용,검증용 데이터를 row index 반환
        X_train,X_test = X_titanic_df.values[train_index],X_titanic_df.values[test_index]
        y_train,y_test = y_titanic_df.values[train_index],y_titanic_df.values[test_index]
        
        #Classifier 학습/예측 정확도 계산 
        clf.fit(X_train,y_train)
        predictions = clf.predict(X_test)
        accuracy = accuracy_score(y_test,predictions)
        scores.append(accuracy)
        print("교차 검증 {} 정확도 : {:.4f}".format(iter_count,accuracy))
        
    mean_score = np.mean(scores)
    print("평균 정확도:{0:.4f}".format(mean_score))
    
#exec_kfold 호출 
exec_kfold(dt_clf,folds=5)

교차 검증 0 정확도 : 0.7542
교차 검증 1 정확도 : 0.7809
교차 검증 2 정확도 : 0.7865
교차 검증 3 정확도 : 0.7697
교차 검증 4 정확도 : 0.8202
평균 정확도:0.7823


from sklearn.model_selection import cross_val_score

scores = cross_val_score(dt_clf,X_titanic_df,y_titanic_df,cv=5)
for iter_count , accuracy in enumerate(scores):
    print("교차검증 {} 정확도 : {:.4f}".format(iter_count,accuracy))
    
print("평균 정확도 : {:.4f}".format(np.mean(scores)))    
교차검증 0 정확도 : 0.7430
교차검증 1 정확도 : 0.7753
교차검증 2 정확도 : 0.7921
교차검증 3 정확도 : 0.7865
교차검증 4 정확도 : 0.8427
평균 정확도 : 0.7879

GridSearchCV를 이용해 DecisionTreeClassifier의 최적 하이퍼 파라미터를 찾아 보자.

from sklearn.model_selection import GridSearchCV

parameters = {'max_depth':[2,3,5,10],'min_samples_split':[2,3,5],'min_samples_leaf':[1,5,8]}

grid_dclf = GridSearchCV(dt_clf,param_grid = parameters,scoring='accuracy',cv=5)
grid_dclf.fit(X_train,y_train)

print("GridSearchCV 최적 하이퍼 파라미터 :",grid_dclf.best_params_)
print("GridSearchCV 최고 정확도 :",grid_dclf.best_score_)
best_dclf = grid_dclf.best_estimator_

dpredictions = best_dclf.predict(X_test)
accuracy = accuracy_score(y_test,dpredictions)
print("테스트 세트에서의 DecisionTreeClassifier 정확도:{:.4f}".format(accuracy))


GridSearchCV 최적 하이퍼 파라미터 : {'max_depth': 3, 'min_samples_leaf': 5, 'min_samples_split': 2}
GridSearchCV 최고 정확도 : 0.7991825076332119
테스트 세트에서의 DecisionTreeClassifier 정확도:0.8715